Classification of Special Civil Court judgments using machine learning

Authors

Abstract

The paper exposes a case study conducted at the Special Civil Court of the Federal University of Santa Catarina, aiming to employ different Machine Learning techniques to classify judgments on failures in the air transport service (Consumer Law) in four labels: “well founded”, “partly founded”, “not well founded” and “without prejudice”. Two experiments were performed, one with the full text of the judgments and other removing the dispositive part, the text that represents the procedural result (the label). The accuracy obtained by the classifiers in the second experiment was minimally reduced. In general, the models obtained by Logistic Regression, ANN and Random Forest achieved higher performance for the “well founded”, “partly founded” and “not well founded” labels, while for the “without prejudice” label, whose sample is smaller, the highest performance was achieved by SVM with RBF Kernel. Orange, version 3.22, an open source software running on Python, was used as tool.

Author Biographies

Isabela Cristina Sabo, Universidade Federal de Santa Catarina

Doutoranda em Direito pela Universidade Federal de Santa Catarina. Bolsista do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). E-mail: isabelasabo@gmail.com.

Thiago Raulino Dal Pont, Universidade Federal de Santa Catarina

Mestrando em Engenharia de Automação e Sistemas pela Universidade Federal de Santa Catarina. Bolsista da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). E-mail: thiagordalpont@gmail.com.

Aires José Rover, Universidade Federal de Santa Catarina

Doutor em Direito pela Universidade Federal de Santa Catarina. Professor Associado da mesma universidade, lotado no Departamento de Direito. E-mail: aires.rover@gmail.com.

Jomi Fred Hübner, Universidade Federal de Santa Catarina

Doutor em Engenharia Elétrica pela Universidade de São Paulo. Professor Associado da Universidade Federal de Santa Catarina, lotado no Departamento de Engenharia de Automação e Sistemas. E-mail: jomifred@gmail.com.

Published

2020-01-10

Issue

Section

30º Encontro Ibero Americano de Governo Eletrônico e Inclusão Digital